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Abstract. We investigate the convergence properties of the functional self-organization
algorithm. We explicitly establish the necessary conditions to start the most simple global
coherent task—clusters (piles) aggregation. Based on the intermediate steady states assumption
and numerical results we show that the growth probability of the same type of clusters are
proportional to the clusters’ dimensions.

1. Introduction

Many natural systems display a complex collective behaviour. The global spatio-temporal
behaviour of a system consisting of a large number of individual units, viewed as dynamical
systems in themselves, interacting with each other, is usually tesweadn intelligence

The paradigm of complexity consists of a complex spatio-temporal behaviour that emerges
from relatively simple local rules. Synchronization is one of the most important phenomena
observed in biological, chemical and physical systems. The mechanism of collective
synchronous behaviour at play, even in simple models such as Chate—Maneville (CM)
cellular automata (CA) or the Bak, Tang and Wiesenfeld (BTW) model of critically self-
organized (CSO) systems, remains elusive and satisfactory analytical solutions are still
missing [1, 8, 12, 14].

Starting from experimental studies and numerical simulations done by Deneubourg and
co-workers [2—7] a stochastic nonlinear model of functional self-organization (FSO) [9, 10]
was developed. We prefer the term FSO (introduced by Deneubourg) insteadaoh
intelligencefor its generality. This study refers to the particular problem of the convergence
of a new algorithm proposed to simulate FSO processes. In our previous papers a CA
model for the FSO procesess [9, 10] was proposed. The FSO model is based on three
concepts: environment entity and object The environment usually, but not necessarily,
is a two-dimensional lattice. Throughout tle@vironmentsome entities (robot-like ants
(RLA) according to Deneubourg) perform a random walk motion. At the lattice sites
there are differenbbject types denoted bya, b, c, ... (the empty site is a speciabject
¢). Every entity recognizes thebject’'s type can pick up arobject, transport and put it
down on an empty lattice site. Thentities have no map of thenvironmentand there
is no direct communication between them. One of the most simple global tasks for the
system consists of a cluster (pile) of the samhgect types'aggregation. To obtain a global
emergent behaviour evefRLA has memoryregisters. Thus, to every encounteraofect
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type there corresponds a binary record in the memory ofdhsity. The current binary
record corresponding to the-type objectreceives ‘1’ if the current encounteretbject is
ana-type objectotherwise receives ‘0’. At each timestep tReA carries arobject (a free

RLA carries ap-type object and has to decide whether to swap the cardbjbct with the

one it has. The swapping probability depends on how n@bjgctsof the same type the
RLA has met in the past. From this viewpoint, this model seems to be of CM type due
to the usage of the totalistic local rule. The major difference consists of the usage of the
totalistic rule over the memorized record, namely, over the stochastic path.

The applications of the FSO model range from ttlassical study of the social
behaviour of ant colonies [2—7], robot team coordination [13], immune system response
[11], double-layer plasma self-organization, synthetic multitexture generation and image
processing [9, 10], etc.

This paper is organized as follows. In section 2 the model of FSO is defined and
principal concepts are explained. In section 3 we investigate the necessary convergence
conditions to start cluster aggregation. Numerical results to support our theoretical findings
are provided. In section 4 we present and discuss sufficient convergence conditions. Finally,
in section 5 we provide a short summary of the results and current progress.

2. The model

The basic assumptions of our FSO model follow.

(1) Theenvironmentis a rectangular two-dimensional lattice with, x N, sites. The
lattice sites are occupied lpbjects denoted by the letters, b, c, .... A free site is said
to be occupied by ap-type object

(2) At any moment anyentity (robot, RLA)carries anobject The RLA performs a
random walk through the lattice. At each timestep only &€\ can be in a given lattice
site.

(3) When aRLA moves to a given site it must decide whether or not to put down the
carriedobject and to pick up the existing one.

The swapping condition reads as

Jo > f3 @)

where f, is the weighted frequencyf the carriede-type objectand fp is the weighted
frequencyof the encountere@-type object

If the goal is to form only simple patterns, such as clusters (piles) of the sabjext
type then the local decision (1) is similar to the CM [9, 10] totalistic rule. The only
difference is that we apply a totalistic path rule instead of a neighbourhood orientated one.
Therefore, according to the totalistic path rule, or memory based one, if the cabject
has been met more frequently than the encountered one thdRLtheecides to swap the
two objects Let us refer to the following memorized string

| the most recent entry in the memory @
st b bbbbaaaaa

which shows that th&kLA has met fivea-type objectsand five b-type objectsin the past.

In order to simplify numerical evaluations eveRLA associates a binary string to every
object type Therefore, using the string (2) as an example, the corresponding binary string
for the a-type objectis

sa 10000011111 ©)
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Generally speaking, a binary string of lengtthas the following form

Suz Uy iU 2. Ugr 4)
where
L { 1 if an «-type objectwas encountered at stép 5)
o 0 otherwise.

To make a decision according to the previously mentioned global goal (clusters of
identicalobjectsaggregation) evergbject types characterized, at any instant, by a weighted
frequency

Zf:l w(i)ua,i
Yi_aw(@)
wherew(i) is an appropriateveight function To overwhelm the old troubleshooting of the

original FSO mechanism [2—7] we used, for the first time, a recursive defined memory that
allows a whole history recordlhe weighting functiorhas the form

fa(f) = (6)

1
rl
with r a positive parameterthe memory radiusFrom (7) and (6) one obtains
k1 —1 K Ug.i
Ja(K) =7 mzr"_l' €

i=1
From (8) it can be seen thatif > 1, then the contribution of theth step (witht > 1)
to the current decision is quite insignificant. Therefore, we may say that only the most
recent steps contribute to the decision or, in other words, that we hstveramemory The
limiting caser = 1 corresponds to an infinite memory. The case when 1 exacerbates
the contributions of the steps witht >> 1 and diminishes the contributions of the most
recent ones. In the present simulations 1.

Let us first observe that each time we compare tmgighted frequenciethe factor
behind the sum in (8) is the same and can be always omitted. Therefore, to make a decision
it is sufficient to compute, at any instant, the sum

T
St="(uai), w(i) 9)
i=1
where (u,;), is the binary digit corresponding to théh place in thex string at thenth
iteration step. The next step requires a new evaluation of the sum

T+1
SI = (i dn 1w (i) (10)
i=1
where the following shifting rule takes place
(ua,i)nJrl = (ua,ifl)n for i 2 2
1 if the object left in the current site is of-type (11)
(u(x,l)n+l - .
0 otherwise.

Using (11), (10) and (9) one obtains

1—r
St — 8" = (g )pprw(l) + —S. (12)
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which is the Langevin stochastic map of the process. It is obvious from (12) that there
is no loss of information using the proposed form (7)tbé weighted memory function
Moreover, to compute and compare the two sums at a give instant we need only two
memory cells for everybject type Despite its simplicity, the first-order recurrent scheme
(12) does not allows a truly infinite record. This limitation follows from the internal finite-
digit representation of any real number [9, 10]. This fact leads teffattive memory length

T greater than that used in [2—7] but finite (see [9, 10]).

3. The necessary conditions for the convergence of the FSO algorithm

First, we demonstrate the necessary convergence condition in order to start to aggregate
clusters of the samebjects typefrom an initially random distribution.

Here, and throughout the whole paper, we mearcdmyvergence of the FSO algorithm
the property of the locally oriented dynamics to drive the global behaviour taekeed
macroscopic behaviour (e.g. clusters (piles) aggregation)

For this purpose let us assume, without any loss of generality, that at the first step a
RLA had met aru-type objectand picked it up. Then let us suppose that RieA had
moved through a field entirely occupied bytype objectsand, afterr steps the effective
memory lengti9]), it had again met an-type object

The less favourable string for thetype objectaggregation is

T

——
Sar :100...0 (13)

where the last entry indicates that tReA had previously met only one-type object The
corresponding string for the-type objectss

T

——
spe 1011 1. (14)

Thenecessary (convergence) condititmput down the carriedbjectin one of the four
neighbour lattice sites of the most recentype objecencountered ig, (t) > f,(r) which,
using (6), can be written

Pl 2T+ 1> 0.
This relation is satisfied if and only if € (ro(7), 2), wherery(t) is the root of the equation
Pl 2T 4+1=0

with r € (1,2). Therefore, even in the less favourable case for the two-object cluster
aggregation, it is possible to choosesuch that awo-object clustemappears. Once &vo-
object clusterhas been formed it starts to grow [9]. On the other hand, the algorithm
convergesfor any concentration of thebjects[9, 10]. This is one of the most important
achievements, which does not work in [2—7].

How long will it take to reach the less probable configuration or, equivalently, what is
the probability for the associated Markov chain (13) to occur? To estimate this probability
we used a mean-field viewpoint. Let us suppose that the probability of findiodjant in
a given site does not depends on the othigects’ positions. Therefore, the probability of
finding anobject say ofa-type can be approximated in the neighbourhood of an arbitrary
lattice site byp, = c,y; = caé, wherec, = Nﬁ is the concentration of the-type objectsv
is thevolumeof the neighbourhood and is the latticevolume Let p,; be the probability
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of findingi (4 > i > 0 ) a-type objectsin the neighbourhood of an arbitrary site. An
approximation of this probability is given by the binomial distribution

i . .
a,i — (1— a N“_l'
Pa, (N)pa( Pa)

The mean number of the-type objectsin the neighbourhood of an arbitrary lattice site
reads as

4 ./ ; i

£ = > oiPai . Zi:OI(l\l/[,)p:l(l_ pa)™!
a= =<7 iy g i
YisoPai  Xizo(y,)Pi— p)N

The above relation allows to write the mean probability of findinguatype objectin the
neighbourhood of an arbitrary lattice site in the form

(15)

Pa = %éa
and for theb-type object
pr=3E=34-8&)=1—p,
In order to obtain the probability to realize the less favourable path the following assumptions
were made:
e jumps are independent events (random walk),
e the RLA met at the first step an-type objectwith the probability% and picked it
up,
¢ the robot movest — 2 steps through &-type objectsfield,

o finally, the RLA met anothew-type object
Using the above conditions, one may write

N, -
Pmin = W(l - pa)I 2Pa (16)

where the first factor is taken because RIeA met ana-type objectat the first step with
the probability% and that theobjectis then carriedc — 1 steps until anothet-type object
is found. It follows that the maximum number of steps which ensures convergence is

1 N 1
e = Ny Ful— 2 4

The influence of the concentrati@nof the objectsand theeffective memory length
on the conventional Monte Carlo simulation timesteps is shown in figure 1.

Our numerical simulations agree with the theoretically evaluated number of steps (17)
(see figure 2).

It is also intuitively obvious that thememory radiusmust depend on the cluster
dimension. Therefore, to obtain an optimum computational time we have to perform a
simulated annealingvith respect to thenemory radius The work is in progress and the
results will be published in a forthcoming paper.

4. The sufficient convergence conditions

The above results refer only tthe necessary convergence conditioe imagined that

the system’s global behaviour is organized such that, starting with a random distribution of
objectsthrough theenvironmentthe RLA first organizetwo-object clustersver the whole
lattice, thenthree-object cluster@and so on. The advantage of thigermediate steady
states behaviouis an analytical realistic prediction on the system’s global behaviour. On
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Figure 1. The plot of the conventional Monte Carlo timesteps dependence on concentration
¢ and effective memory length using logarithmic coordinates is shown. The values of the
effective memory length correspond to the memory radias(1, 2).

d f

w

Figure 2. The picture of two-type clusters aggregation in a two-dimensional rectangular
100x 100 lattice with 3CRLAand amemory radius- = 1.05. The initial configurations &), (c),
respectively €)) are randomly generated with 10%, 1% and, respectively, 0.1% concentration
of the a-type objects (black pixels). The final aggregation stages were obtained bjtag{
steps, ¢) 0.5 x 10° steps andf() 0.9 x 10° steps.

the basis ofthe intermediate steady statassumption we found necessary conditions to
form two-object clustersthree-object clustersetc. As a drawback of the above assumption
we may observe that the clusters’ (piles’) aggregation is a competitive growing process and
thereforethe necessary convergence conditionay not besufficientin order to reach a
final steady state of the aggregation process.

In this section we deal witlufficient conditiorfor cluster aggregation.

Let P;(x,t) be the probability for theth RLA to be in the sitex € {1,2,..., N} at
timestepr. In the following we will consider only one RLA in the lattice. Then the master
equation of the process can be written

Px,t+1)=Px—-10pt+P(x+11)p (18)
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Figure 3. The one-dimensional periodic lattice with two clustersaefype objectsand two
clusters ofb-type objects

where p™(p™) is the right (left) transition probability. Let the vector
v(t)! = (P, )P(2,1)...P(N,1)) (19)

where the superior indeX means transposition. Using vectorial notation (19), it is easy to
cast equation (18) into the form

vt +1) = Av(r) (20)
where
0O p~ O 0 p*
pt 0 p° 0O O
0O pt 0 ... 0 O
A=| . o (21)
0O 0 O 0 p-
p- 0 O pt 0
with the initial condition
v(0)" = (00...010...00) (22)
if the RLA starts at timestep= 0 from x = i. In the preceding section we showed (based

on theoretical and numerical arguments) that the FSO algorithm starts to form clusters
(piles) of objects selected by their type. But, near the final aggregation stage it is possible
to obtain, for example, only twa-type clusters (piles). ThdRLA pick up a-type objects
from one a-type clusters, transport and put them down in the other one. NexRib&
can decide to move aobject back to the old cluster and so on. Therefore, we may ask:
Can the algorithm be trapped in an infinite oscillatory loop? To demonstrate that our FSO
algorithm does not allow oscillatory phenomena let us refer to the particular configuration
from figure 3.

Using (8) it is straightforward to show that if,(z) > f,(r) for the memory radius
r =1 then it is possible to find; > r > 1 such thatf,(t) > f,(t).
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Indeed, let us consider two binary strings; andu,; with i = 1,2,..., ¢ which
satisfy the conditionf,(t) > f,(r) for r = 1 namely, Zleua,,- =a =3 Ifr>1
the swapping conditiory,(t) > f,(t) depends on, T and the statistical distribution of
the binary digitsu, ;. We expect a typical occurrence for the binary strings of the form
A A2 A A2

§;:11...100...011...100...0... with A, andi, some characteristic lengths depending

on the aggregationfstage. If the swapping condition is satisfied for the less favourable binary

T—a o

strings, : 00...011...1 with « > 5 then that will be true for any binary string. Using
N———’

(8) the swappingt condition gives

r'—=2r7"4+1<0
namely,r € (1, r1(t)) whereri(t) < ro(z) is the solution of the equation

rf—=2r'7*+1=0.
Therefore, there exists a limit valug(z) > 1 of the memory radiussuch that, for every
r € (1,ri(zr)), the condition f,(t) > f,(t) is satisfied. That is why we refer in the
following only to the convergence of the algorithm whee= 1. If in the lattice there are
only two differentobject typesthen the conditionf, () > f,(t) is satisfied if the number
of the a-type objectsencountered is greater than for thdype objects Let p;(x) be the
probability of finding ana-type objectat theith step, starting from an arbitrary lattice site
x. The probability of realizingf, (t) > f,(t) starting fromxg is
P(x0, fa > fp) = p1(x0) p2(x0) - .. pr(x0) + pi(x0) p2(x0) . . . p=(x0)

+ p1(x0) p5(x0) - . . P (x0) + p1(x0) p2(x0) . . . p(x0)

+pI(x0) p5(x0) . .. pr(x0) + - - - = p1(x0) p2(x0) - . . pr(x0)

8 |:1+ = pj, (x0) pf,(x0) = p;, (x0) pj, (x0) P, (x0)

‘=, Piu(x0) pi(x0) ;5. Piy(X0) Pip (X0) Pis (X0)

b Y D (x0) P, (x0) - - - D7y (Xo)} 23

i i, Pin(xX0) pip(x0) - .. piy (x0)

with K = [3] + 1, where [] is the round function ang = 1 — p;.
Equation (23) can be written

[3]+1 -
P(xo, fa > fv) = p1(xo) p2(xo0) ... Pr(xo)[ Z (-1 <i>
=0
[5]

. 0 .
+1; Z(—l)j (i) + o+ 5] Z(—l)j <i>:| (24)
2o

j=0
where
u 1
I, = (25)
! Z Piy (X0) iy (x0) - . . pi (x0)
with j =1,2,...,[5] + 1. The above equation can be expressed in a more compact form

K K—i .
P(xo, fa> fo) =T Y T Y (=1)/ (j ) (26)
L

i=0
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On the other hand, the probability of finding artype objectat theith step starting from
an arbitrary lattice site is given by the binomial distribution

pix) =Y <f )<p+>f'<p>"fg<x —i+2j) (27)
j=0
whereg(x) is the characteristic function of the site
1 if there is anu-type objectin the xth site
gx) = . (28)
0 otherwise.

Let P; be the probability of realizing’, > f, whenRLAIs in the firsta-type cluster,
namely (x € {1,2,...,n1}), and P;; be the probability of realizingf, > f, when RLA
is in the secondi-type cluster, namely(x € {1+ ny + myq,...,n1 + m1 + n2}). A rough
estimation of theP; can be thought of as the product of the probability of findinBLaA
in the firsta-type cluster by the probability of realizing, > f, condition when theRLA
is indeed in the first cluster

n
Pr=PGo fo>fi)  xo€(l2....m). (29)
In a similar manner we may write
n ’ ’
Py = NZP(xO, fa > fp) xo € {14+ n1+m1,...,n1+my+n2}. (30)

It is necessary to use the symmetry of the configuration to bypass some tremendous calculus
by puttingni = m; = m, n, = 2n1, xo = 1, xé) =1+ n1+ mq. Let us define the ratio of
the previousely defined probabilities
P P (xo0, fa
ro b _m (x?f>fb). (31)

Py nz P(xo’ fa > fp)
For ny = ny, evidently, R = 1, in other words it is equally probable for the fitsttype
cluster to grow as the second one. Far# n, we expect this number to indicate which
cluster is more probable to grow. A rough estimation of this ratio can be done using the
first approximation of the tern® (xo, f, > f,) from (26)

P; . nyy pi(xo)

R=—= —. (32)
P n2 i 3 pi(xg)
With the help of (27) it is now possible to write
N
pix) = a;(x)g(j) (33)

j=1

wherea;; (x = 1) are the elements of the first row of the matri% It is also straightforward
that a;;_. (1) = a;;(x), which means that on changing the starting point of Rie\ from
xo = 1 to xop = x a cyclic permutation of the columns of matri¥ is realized. In view of
the preceding statements it follows that

i) Y ia (D) S a @)+ X ai (D)

Di (1 +n1+ ml) a ZJN:]_ aijj (1 +n1+ ml)g(f) B Z?r:nl+4m aij(l) + Z?n:ql-&-m aij (1) '

(34)
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Taking p* = p~ = 0.5 then the coefficients;; are binomial coefficients. We can observe,
by direct evaluation from (21), that for big enough values tie first line of theA’ matrix
has the form

(a)o (2o (o) o (570 (5

for eveni. Using the symmetry of the binomial coefﬂmen({z,() %

2k

mﬁ'n—(lljrw = 1. Therefore, the final estimation of the ratio&s= ;* = 0.5. Despite
the unrealistic simplifications made up to now it was found that the probability of realizing
the condition f, > f,, and therefore of putting down antype objectis as great as the
cluster dimension. In other words, the probability of growing a cluster (pile) is directly
proportional with its dimension (i.e. the numberafjectsin it). Therefore the oscillatory
phenomena, if they exist, are only transitory. That completes the proof of the convergence.
The basic tool of more refined analysis concerning the dependeritembther parameters
(p*, p~, x0, m1, m») remain the relations (26) and (31) and work is in progress.

Finally, we should comment the influence of the initial approximations made to obtain
the analytical result (31). First of all we considered in (18) only dleA F = 1
case. The assumption is valid if the coupling betweenehttiesis very weak. If the
concentration of thebjectsin the environments very low the condition is fulfilled. Our
numerical simulation, with concentrations of up to 10% (see figure 2), indicates a good
agreement with theoretical established Monte Carlo timesteps. Therefore, we may conclude
that nonlinear coupling of thentities’ local dynamics does not play a significant role in
the low-concentration limit and our results are valid. We also considered here a near-
equilibrium particular configuration (see figure 3) to demonstrate the sufficient convergence
condition. This particular choice is based on a numerical observed oscillatory phenomenon
which manifests itself near the final aggregation stage. We demonstrate that the probability
of growing a cluster with one unit is proportional to its dimension and, therefore, the
oscillations are only transient phenomena.

)) we have

4.1. Numerical simulations

Let us briefly discuss the numerical simulations results that support our conclusion.

One set of simulations was done wight = p~ = 0.5 andxg = 1. We letRLAto
walk through the latticer( = 10° steps). Every time wherf, > f, and theRLA s in the
first a-type cluster the variableéV; increases by one unit. Otherwise whén> f, and the
RLA s in the secondi-type cluster N, increases by one unit. It is assumed that the ratio
R (see (31)) can be estimated by the ra%o The numerical simulations were performed
for constant dimension of the firgttype cluster ¢; = 10) and increasing the dimension
of the second onenf = 20, 40, 60, 80, 100, 120, 140, 160, 180, 200). Figure 4 shows
the dependence of the probability rat%’g on the two-cluster dimension ratiﬁ. As we
theoretically predicted, this number must decrease V\lhedecreases In figure 4 there

are three different plots of th%— dependence oﬁr for dlfferent dimensions of thé-type
clusters f2; = m, = 50, 100, 500) It can be séen that the influence of the ofbthgpe
clusters on the aggregation of thetype clusters is not significant.

Our sufficient convergence demonstration is based on the evaluation of theRratio
(see (31)) which (according to figure 4) confirms the theoretical predicted dependence.
But, our previous results were done in a particular case, namely, onlyRb#ein
the lattice ¢ = 1). We performed numerical simulations with = 30 RLA in a
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Figure 4. The probability ratio% dependence on the ratij&2 of the two a-type cluster for
different b-type clusters dimensionsny = mp = m). ‘%’ corresponds ton = 50, ‘+' to
m = 100 and ‘0’ tom = 500. In all these simulations= 1.5 andxp = 1.

periodic one-dimensional latticenvironment(see figure 5). Differenta-type cluster
dimensions were usegh = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 and, respectively;, =
20, 40, 60, 80, 100, 120, 140, 160, 180, 200, with a constant ratio of the twotype clusters
(Z; = %) Here, as we pointed out in the previous case, three different plots of the

%;dependence orfi— were considered. Comparing t% values from figures 4 and 5
we find that an increase of the numberesttities does not change the established sufficient
convergence condition.

Finally, we performed numerical simulations starting from different initial positions. It
can be seen from figure 6 that the mean value of the r%g(iowith a constant® = 0.5

value, remains in the expected range for every initial positign

5. Conclusions

In this paper we analysed the convergence properties of the FSO algorithm.

We found necessary analytical conditions to star-objectcluster aggregation. We
also found a good agreement between the theoretical and numerical limits of the Monte
Carlo timesteps that ensure the convergence of the algorithm.

We also proved that, near the final aggregation stage, the probability of increasing a
cluster (pile) is proportional to its dimension (the number of includbgkcty. Therefore,
we derived a sufficient convergence condition and demonstrate that the algorithm cannot be
trapped in an oscillatory regime.

We considered a particular, monotonically decreasivejght function To include some
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Figure 5. The ratio% dependence on the-type cluster dimension for the fixe% =05
value of the twoa-type clusters. %' corresponds ton; = m = 50, ‘+’ to m1 = my = 100
and ‘0’ tomy = mo = 500. In all these simulations= 1.5 andxg = 1.

N%q : (%)

33
32r
31r
30
29r

2Bt

*o

27 1, I3 1 1 1 ]
g 25 50 75 100 125 150

Figure 6. The ratio% dependence on the starting positignin the lattice for the fixed values

% =05 andml = my = 100.
experimental facts related to the self-organized response of the immune system to tumour
attack we considered a different-monotonically increasimgight function The work is
in progress and some preliminary results were published (see [11]).



Convergence properties of the FSO stochastic algorithm 8463

References
[1] Boccara N, Goles E, Martinez S and Picco P (ed) 1%®8lular Automata and Cooperative Systems
(Dordrecht: Kluwer)
[2] Deneubourg J L, Pasteel M and VerhaeghJ C 1983 Probabilistic behaviour in ants: A strategy of errors
J. Theor. Biol.105259-71
[3] Deneubourg J L, Fresneau D, Gross S, Lachaud J-P and Rabtekell987 Self-organisation mechanism
in ant societies (Il): Learning during foraging and division of lalfsom Individual Characteristics to
Collective Organization in Social Insectsl J M Pasteels a@nJ L DeneubourgBExper. Suppl54 177-96)
(Basel: Birkhauser)
[4] Deneuboug J L and Goss S 1989 Collective patterns and decision makinglogy, Ecology and Evolution
1295-311
[5] Deneubourg J L, Gross S, Sandini G, Ferrari F and Dario P 1990 Self-organising collection and transport of
objects in unpredictable environmerRsoc. Japan—USA Symp. on Flexible Automaton
[6] Deneubourg J L, Gross S, Franks N, Sandova-Franks A, Detrian C and Chretien L 1991 The dynamics of
collective sorting robot-like-ants and ant-like-rob&c. 1st Int. Conf. Simulation of Adaptive Behaviour
(Cambridge, MA: MIT) pp 356-62
[7] Deneuboug J L 1977 Application de l'ordre par fluctuations a la description de certaines etapes de
construction du nid chez les termittsectes Sociau®4 117-30
[8] von Newmann J 196&heory of Self-Reproducing Automatd A W Burks (Urbana, IL: University of Illinois
Press)
[9] Oprisan S A, Holban V and Moldoveanu B 1996 Functional self-organization performing wide-sense
stochastic processéthys. LettA 216 303-6
[10] Oprisan S A 1998 The theory of stochastic functional self-organizafion J. Physin press
[11] Oprisan S A, Tarus B and FrangopB T 1998 The mesoscopic approach to chemical mechanism of tumor
growth (Il) Rom. J. Phys43 595-601
[12] Perdag J M and Lejeune A 1993 (edJellular Automata(Singapore: World Scientific)
[13] Unsal C 1993 Self-organisation in large population of mobile rodtfsThesidvirginia Polytechnic Institute

[14]

and SU
Wolfram S 1985Phys. Rev. Lets5 449



