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Abstract. We investigate the convergence properties of the functional self-organization
algorithm. We explicitly establish the necessary conditions to start the most simple global
coherent task—clusters (piles) aggregation. Based on the intermediate steady states assumption
and numerical results we show that the growth probability of the same type of clusters are
proportional to the clusters’ dimensions.

1. Introduction

Many natural systems display a complex collective behaviour. The global spatio-temporal
behaviour of a system consisting of a large number of individual units, viewed as dynamical
systems in themselves, interacting with each other, is usually termedswarm intelligence.
The paradigm of complexity consists of a complex spatio-temporal behaviour that emerges
from relatively simple local rules. Synchronization is one of the most important phenomena
observed in biological, chemical and physical systems. The mechanism of collective
synchronous behaviour at play, even in simple models such as Chate–Maneville (CM)
cellular automata (CA) or the Bak, Tang and Wiesenfeld (BTW) model of critically self-
organized (CSO) systems, remains elusive and satisfactory analytical solutions are still
missing [1, 8, 12, 14].

Starting from experimental studies and numerical simulations done by Deneubourg and
co-workers [2–7] a stochastic nonlinear model of functional self-organization (FSO) [9, 10]
was developed. We prefer the term FSO (introduced by Deneubourg) instead ofswarm
intelligencefor its generality. This study refers to the particular problem of the convergence
of a new algorithm proposed to simulate FSO processes. In our previous papers a CA
model for the FSO procesess [9, 10] was proposed. The FSO model is based on three
concepts:environment, entity and object. The environment, usually, but not necessarily,
is a two-dimensional lattice. Throughout theenvironmentsomeentities (robot-like ants
(RLA) according to Deneubourg) perform a random walk motion. At the lattice sites
there are differentobject types, denoted bya, b, c, . . . (the empty site is a specialobject,
φ). Every entity recognizes theobject’s type, can pick up anobject, transport and put it
down on an empty lattice site. Theentities have no map of theenvironmentand there
is no direct communication between them. One of the most simple global tasks for the
system consists of a cluster (pile) of the sameobject types’aggregation. To obtain a global
emergent behaviour everyRLA hasmemoryregisters. Thus, to every encounteredobject
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type there corresponds a binary record in the memory of theentity. The current binary
record corresponding to theα-type objectreceives ‘1’ if the current encounteredobject is
anα-type object, otherwise receives ‘0’. At each timestep theRLA carries anobject (a free
RLA carries aφ-type object) and has to decide whether to swap the carriedobject with the
one it has. The swapping probability depends on how manyobjectsof the same type the
RLA has met in the past. From this viewpoint, this model seems to be of CM type due
to the usage of the totalistic local rule. The major difference consists of the usage of the
totalistic rule over the memorized record, namely, over the stochastic path.

The applications of the FSO model range from theclassical study of the social
behaviour of ant colonies [2–7], robot team coordination [13], immune system response
[11], double-layer plasma self-organization, synthetic multitexture generation and image
processing [9, 10], etc.

This paper is organized as follows. In section 2 the model of FSO is defined and
principal concepts are explained. In section 3 we investigate the necessary convergence
conditions to start cluster aggregation. Numerical results to support our theoretical findings
are provided. In section 4 we present and discuss sufficient convergence conditions. Finally,
in section 5 we provide a short summary of the results and current progress.

2. The model

The basic assumptions of our FSO model follow.
(1) The environmentis a rectangular two-dimensional lattice withNx × Ny sites. The

lattice sites are occupied byobjects, denoted by the lettersa, b, c, . . . . A free site is said
to be occupied by anφ-type object.

(2) At any moment anyentity (robot, RLA)carries anobject. The RLA performs a
random walk through the lattice. At each timestep only oneRLA can be in a given lattice
site.

(3) When aRLA moves to a given site it must decide whether or not to put down the
carriedobject and to pick up the existing one.

The swapping condition reads as

fα > fβ (1)

wherefα is the weighted frequencyof the carriedα-type objectand fβ is the weighted
frequencyof the encounteredβ-type object.

If the goal is to form only simple patterns, such as clusters (piles) of the sameobject
type, then the local decision (1) is similar to the CM [9, 10] totalistic rule. The only
difference is that we apply a totalistic path rule instead of a neighbourhood orientated one.
Therefore, according to the totalistic path rule, or memory based one, if the carriedobject
has been met more frequently than the encountered one then theRLA decides to swap the
two objects. Let us refer to the following memorized string

⇓ the most recent entry in the memory
sτ : b b b b b a a a a a

(2)

which shows that theRLA has met fivea-type objectsand fiveb-type objectsin the past.
In order to simplify numerical evaluations everyRLA associates a binary string to every
object type. Therefore, using the string (2) as an example, the corresponding binary string
for the a-type objectis

sa : 0000011111. (3)
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Generally speaking, a binary string of lengthτ has the following form

sα,τ : uα,1uα,2 . . . uα,τ (4)

where

uα,i =
{

1 if an α-type objectwas encountered at stepi

0 otherwise.
(5)

To make a decision according to the previously mentioned global goal (clusters of
identicalobjectsaggregation) everyobject typeis characterized, at any instant, by a weighted
frequency

fα(τ ) =
∑τ

i=1w(i)uα,i∑τ
i=1w(i)

(6)

wherew(i) is an appropriateweight function. To overwhelm the old troubleshooting of the
original FSO mechanism [2–7] we used, for the first time, a recursive defined memory that
allows a whole history record.The weighting functionhas the form

w(i) = 1

ri−1
(7)

with r a positive parameter—the memory radius. From (7) and (6) one obtains

fα(K) = rK−1 r − 1

rK − 1

K∑
i=1

uα,i

ri−1
. (8)

From (8) it can be seen that ifr � 1, then the contribution of theτ th step (withτ � 1)
to the current decision is quite insignificant. Therefore, we may say that only the most
recent steps contribute to the decision or, in other words, that we have ashort memory. The
limiting caser = 1 corresponds to an infinite memory. The case whenr < 1 exacerbates
the contributions of theτ steps withτ � 1 and diminishes the contributions of the most
recent ones. In the present simulationsr > 1.

Let us first observe that each time we compare twoweighted frequenciesthe factor
behind the sum in (8) is the same and can be always omitted. Therefore, to make a decision
it is sufficient to compute, at any instant, the sum

Snα =
τ∑
i=1

(
uα,i

)
n
w(i) (9)

where (uα,i)n is the binary digit corresponding to theith place in theα string at thenth
iteration step. The next step requires a new evaluation of the sum

Sn+1
α =

τ+1∑
i=1

(uα,i)n+1w(i) (10)

where the following shifting rule takes place

(uα,i)n+1 = (uα,i−1)n for i > 2

(uα,1)n+1 =
{

1 if the object left in the current site is ofα-type

0 otherwise.

(11)

Using (11), (10) and (9) one obtains

Sn+1
α − Snα = (uα,1)n+1w(1)+ 1− r

r
Snα (12)
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which is the Langevin stochastic map of the process. It is obvious from (12) that there
is no loss of information using the proposed form (7) ofthe weighted memory function.
Moreover, to compute and compare the two sums at a give instant we need only two
memory cells for everyobject type. Despite its simplicity, the first-order recurrent scheme
(12) does not allows a truly infinite record. This limitation follows from the internal finite-
digit representation of any real number [9, 10]. This fact leads to aneffective memory length
τ greater than that used in [2–7] but finite (see [9, 10]).

3. The necessary conditions for the convergence of the FSO algorithm

First, we demonstrate the necessary convergence condition in order to start to aggregate
clusters of the sameobjects typefrom an initially random distribution.

Here, and throughout the whole paper, we mean byconvergence of the FSO algorithm
the property of the locally oriented dynamics to drive the global behaviour to thedesired
macroscopic behaviour (e.g. clusters (piles) aggregation).

For this purpose let us assume, without any loss of generality, that at the first step a
RLA had met ana-type objectand picked it up. Then let us suppose that theRLA had
moved through a field entirely occupied byb-type objectsand, afterτ steps (the effective
memory length[9]), it had again met ana-type object.

The less favourable string for thea-type objectaggregation is

sa,τ :

τ︷ ︸︸ ︷
100. . .0 (13)

where the last entry indicates that theRLA had previously met only onea-type object. The
corresponding string for theb-type objectsis

sb,τ :

τ︷ ︸︸ ︷
011. . .1 . (14)

Thenecessary (convergence) conditionto put down the carriedobject in one of the four
neighbour lattice sites of the most recenta-type objectencountered isfa(τ ) > fb(τ ) which,
using (6), can be written

rτ+1− 2rτ + 1> 0.

This relation is satisfied if and only ifr ∈ (r0(τ ), 2), wherer0(τ ) is the root of the equation

rτ+1− 2rτ + 1= 0

with r ∈ (1, 2). Therefore, even in the less favourable case for the two-object cluster
aggregation, it is possible to chooser such that atwo-object clusterappears. Once atwo-
object clusterhas been formed it starts to grow [9]. On the other hand, the algorithm
convergesfor any concentration of theobjects [9, 10]. This is one of the most important
achievements, which does not work in [2–7].

How long will it take to reach the less probable configuration or, equivalently, what is
the probability for the associated Markov chain (13) to occur? To estimate this probability
we used a mean-field viewpoint. Let us suppose that the probability of finding anobject in
a given site does not depends on the otherobjects’ positions. Therefore, the probability of
finding anobject, say ofa-type, can be approximated in the neighbourhood of an arbitrary
lattice site bypa = ca vV = ca 4

V
, whereca = Na

N
is the concentration of thea-type objects, v

is thevolumeof the neighbourhood andV is the latticevolume. Let pa,i be the probability
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of finding i (4 > i > 0 ) a-type objectsin the neighbourhood of an arbitrary site. An
approximation of this probability is given by the binomial distribution

pa,i =
(
i

Na

)
pia(1− pa)Na−i .

The mean number of thea-type objectsin the neighbourhood of an arbitrary lattice site
reads as

ξ̄a =
∑4

i=0 ipa,i∑4
i=0pa,i

=
∑4

i=0 i
(
i

Na

)
pia(1− pa)Na−i∑4

i=0

(
i

Na

)
pia(1− pa)Na−i

. (15)

The above relation allows to write the mean probability of finding ana-type objectin the
neighbourhood of an arbitrary lattice site in the form

p̄a = 1
4 ξ̄a

and for theb-type object

p̄b = 1
4 ξ̄b = 1

4(4− ξ̄b) = 1− p̄b.
In order to obtain the probability to realize the less favourable path the following assumptions
were made:
• jumps are independent events (random walk),
• the RLA met at the first step ana-type objectwith the probabilityNa

N
and picked it

up,
• the robot movesτ − 2 steps through ab-type objectsfield,
• finally, the RLA met anothera-type object.
Using the above conditions, one may write

pmin = Na

N
(1− p̄a)τ−2p̄a (16)

where the first factor is taken because theRLA met ana-type objectat the first step with
the probabilityNa

N
and that theobject is then carriedτ − 1 steps until anothera-type object

is found. It follows that the maximum number of steps which ensures convergence is

Nmax= 1

pmin
= N

Na

1

p̄a(1− p̄a)τ−2
. (17)

The influence of the concentrationc of the objectsand theeffective memory lengthτ
on the conventional Monte Carlo simulation timesteps is shown in figure 1.

Our numerical simulations agree with the theoretically evaluated number of steps (17)
(see figure 2).

It is also intuitively obvious that thememory radiusmust depend on the cluster
dimension. Therefore, to obtain an optimum computational time we have to perform a
simulated annealingwith respect to thememory radius. The work is in progress and the
results will be published in a forthcoming paper.

4. The sufficient convergence conditions

The above results refer only tothe necessary convergence conditions. We imagined that
the system’s global behaviour is organized such that, starting with a random distribution of
objectsthrough theenvironment, the RLA first organizetwo-object clustersover the whole
lattice, thenthree-object clustersand so on. The advantage of thisintermediate steady
states behaviouris an analytical realistic prediction on the system’s global behaviour. On



8456 S A Oprişan

Figure 1. The plot of the conventional Monte Carlo timesteps dependence on concentration
c and effective memory lengthτ using logarithmic coordinates is shown. The values of the
effective memory lengthτ correspond to the memory radius∈ (1, 2).

Figure 2. The picture of two-type clusters aggregation in a two-dimensional rectangular
100×100 lattice with 30RLAand amemory radiusr = 1.05. The initial configurations ((a), (c),
respectively (e)) are randomly generated with 10%, 1% and, respectively, 0.1% concentration
of the a-type objects (black pixels). The final aggregation stages were obtained after (b) 106

steps, (d) 0.5× 106 steps and (f ) 0.9× 106 steps.

the basis ofthe intermediate steady statesassumption we found necessary conditions to
form two-object clusters, three-object clusters, etc. As a drawback of the above assumption
we may observe that the clusters’ (piles’) aggregation is a competitive growing process and
thereforethe necessary convergence conditionsmay not besufficient in order to reach a
final steady state of the aggregation process.

In this section we deal withsufficient conditionfor cluster aggregation.
Let Pi(x, t) be the probability for theith RLA to be in the sitex ∈ {1, 2, . . . , N} at

timestept . In the following we will consider only one RLA in the lattice. Then the master
equation of the process can be written

Pi(x, t + 1) = Pi(x − 1, t)p+ + Pi(x + 1, t)p− (18)
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Figure 3. The one-dimensional periodic lattice with two clusters ofa-type objectsand two
clusters ofb-type objects.

wherep+(p−) is the right (left) transition probability. Let the vector

v(t)T = (P (1, t)P (2, t) . . . P (N, t)) (19)

where the superior indexT means transposition. Using vectorial notation (19), it is easy to
cast equation (18) into the form

v(t + 1) = Av(t) (20)

where

A =



0 p− 0 . . . 0 p+

p+ 0 p− . . . 0 0
0 p+ 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 p−

p− 0 0 . . . p+ 0

 (21)

with the initial condition

v(0)T = (00. . .010. . .00) (22)

if the RLA starts at timestept = 0 from x = i. In the preceding section we showed (based
on theoretical and numerical arguments) that the FSO algorithm starts to form clusters
(piles) of objects selected by their type. But, near the final aggregation stage it is possible
to obtain, for example, only twoa-type clusters (piles). TheRLA pick up a-type objects
from onea-type clusters, transport and put them down in the other one. Next theRLA
can decide to move anobject back to the old cluster and so on. Therefore, we may ask:
Can the algorithm be trapped in an infinite oscillatory loop? To demonstrate that our FSO
algorithm does not allow oscillatory phenomena let us refer to the particular configuration
from figure 3.

Using (8) it is straightforward to show that iffa(τ ) > fb(τ ) for the memory radius
r = 1 then it is possible to findr1 > r > 1 such thatfa(τ ) > fb(τ ).
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Indeed, let us consider two binary stringsua,i and ub,i with i = 1, 2, . . . , τ which
satisfy the conditionfa(τ ) > fb(τ ) for r = 1 namely,

∑τ
i=1 ua,i = α > τ

2. If r > 1
the swapping conditionfa(τ ) > fb(τ ) depends onr, τ and the statistical distribution of
the binary digitsua,i . We expect a typical occurrence for the binary strings of the form

sa :

λ1︷ ︸︸ ︷
11. . .1

λ2︷ ︸︸ ︷
00. . .0

λ1︷ ︸︸ ︷
11. . .1

λ2︷ ︸︸ ︷
00. . .0 . . .︸ ︷︷ ︸

τ

with λ1 andλ2 some characteristic lengths depending

on the aggregation stage. If the swapping condition is satisfied for the less favourable binary

string sa :

τ−α︷ ︸︸ ︷
00. . .0

α︷ ︸︸ ︷
11. . .1︸ ︷︷ ︸
τ

with α > τ
2 then that will be true for any binary string. Using

(8) the swapping condition gives

rτ − 2rτ−α + 1< 0

namely,r ∈ (1, r1(τ )) wherer1(τ ) < r0(τ ) is the solution of the equation

rτ − 2rτ−α + 1= 0.

Therefore, there exists a limit valuer1(τ ) > 1 of the memory radiussuch that, for every
r ∈ (1, r1(τ )), the conditionfa(τ ) > fb(τ ) is satisfied. That is why we refer in the
following only to the convergence of the algorithm whenr = 1. If in the lattice there are
only two differentobject typesthen the conditionfa(τ ) > fb(τ ) is satisfied if the number
of the a-type objectsencountered is greater than for theb-type objects. Let pi(x) be the
probability of finding ana-type objectat theith step, starting from an arbitrary lattice site
x. The probability of realizingfa(τ ) > fb(τ ) starting fromx0 is

P(x0, fa > fb) = p1(x0)p2(x0) . . . pτ (x0)+ p∗1(x0)p2(x0) . . . pτ (x0)

+p1(x0)p
∗
2(x0) . . . pτ (x0)+ p1(x0)p2(x0) . . . p

∗
τ (x0)

+p∗1(x0)p
∗
2(x0) . . . pτ (x0)+ · · · = p1(x0)p2(x0) . . . pτ (x0)

×
[

1+
τ∑

i1>i2

p∗i1(x0)p
∗
i2
(x0)

pi1(x0)pi2(x0)
+

τ∑
i1>i2>i3

p∗i1(x0)p
∗
i2
(x0)p

∗
i3
(x0)

pi1(x0)pi2(x0)pi3(x0)

+ · · · +
τ∑

i1>i2>...>iK

p∗i1(x0)p
∗
i2
(x0) . . . p

∗
iK
(x0)

pi1(x0)pi2(x0) . . . piK (x0)

]
(23)

with K = [ τ2] + 1 , where [ ] is the round function andp∗i = 1− pi .
Equation (23) can be written

P(x0, fa > fb) = p1(x0)p2(x0) . . . pτ (x0)

[ [ τ2 ]+1∑
j=0

(−1)j
(
j

τ

)

+51

[ τ2 ]∑
j=0

(−1)j
(
j

τ

)
+ · · · +5[ τ2 ]+1

0∑
j=0

(−1)j
(
j

τ

)]
(24)

where

5j =
τ∑

i1>i2>···>ij

1

pi1(x0)pi2(x0) . . . pij (x0)
(25)

with j = 1, 2, . . . , [ τ2] + 1. The above equation can be expressed in a more compact form

P(x0, fa > fb) = 5τ

K∑
i=0

5i

K−i∑
j=0

(−1)j
(
j

τ

)
. (26)
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On the other hand, the probability of finding ana-type objectat theith step starting from
an arbitrary lattice sitex is given by the binomial distribution

pi(x) =
i∑

j=0

(
j

i

)
(p+)j (p−)i−j g(x − i + 2j) (27)

whereg(x) is the characteristic function of thex site

g(x) =
{

1 if there is ana-type objectin the xth site

0 otherwise.
(28)

Let PI be the probability of realizingfa > fb when RLA is in the firsta-type cluster,
namely (x ∈ {1, 2, . . . , n1}), andPII be the probability of realizingfa > fb when RLA
is in the seconda-type cluster, namely(x ∈ {1+ n1 + m1, . . . , n1 + m1 + n2}). A rough
estimation of thePI can be thought of as the product of the probability of finding aRLA
in the firsta-type cluster by the probability of realizingfa > fb condition when theRLA
is indeed in the first cluster

PI = n1

N
P(x0, fa > fb) x0 ∈ {1, 2, . . . , n1}. (29)

In a similar manner we may write

PII = n2

N
P(x

′
0, fa > fb) x

′
0 ∈ {1+ n1+m1, . . . , n1+m1+ n2}. (30)

It is necessary to use the symmetry of the configuration to bypass some tremendous calculus
by puttingn1 = m1 = m2, n2 = 2n1, x0 = 1, x

′
0 = 1+ n1 + m1. Let us define the ratio of

the previousely defined probabilities

R = PI

PII
= n1

n2

P(x0, fa > fb)

P (x
′
0, fa > fb)

. (31)

For n1 = n2, evidently,R = 1, in other words it is equally probable for the firsta-type
cluster to grow as the second one. Forn1 6= n2 we expect this number to indicate which
cluster is more probable to grow. A rough estimation of this ratio can be done using the
first approximation of the termP(x0, fa > fb) from (26)

R = PI

PII

∼= n1

n2

τ∏
i=1

pi(x0)

pi(x
′
0)
. (32)

With the help of (27) it is now possible to write

pi(x) =
N∑
j=1

aij (x)g(j) (33)

whereaij (x = 1) are the elements of the first row of the matrixAi . It is also straightforward
that aij−x(1) = aij (x), which means that on changing the starting point of theRLA from
x0 = 1 to x0 = x a cyclic permutation of the columns of matrixAi is realized. In view of
the preceding statements it follows that

pi(1)

pi(1+ n1+m1)
=

∑N
j=1 aij (1)g(j)∑N

j=1 aij (1+ n1+m1)g(j)
=

∑m
j=1 aij (1)+

∑4m
j=1+2m aij (1)∑5m

j=1+4m aij (1)+
∑3m
j=1+m aij (1)

.

(34)
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Takingp+ = p− = 0.5 then the coefficientsaij are binomial coefficients. We can observe,
by direct evaluation from (21), that for big enough values ofi the first line of theAi matrix
has the form (

k

2k

)
0

(
k − 1

2k

)
0

(
k − 2

2k

)
0 . . .

(
k + 2

2k

)
0

(
k + 1

2k

)
0

for even i. Using the symmetry of the binomial coefficients
((

i

2k

) = (2k−i
2k

))
we have

pi(1)
pi (1+n1+m1)

∼= 1. Therefore, the final estimation of the ratio isR ∼= n1
n2
= 0.5. Despite

the unrealistic simplifications made up to now it was found that the probability of realizing
the conditionfa > fb, and therefore of putting down ana-type object, is as great as the
cluster dimension. In other words, the probability of growing a cluster (pile) is directly
proportional with its dimension (i.e. the number ofobjects in it). Therefore the oscillatory
phenomena, if they exist, are only transitory. That completes the proof of the convergence.
The basic tool of more refined analysis concerning the dependence ofR on other parameters
(p+, p−, x0, m1, m2) remain the relations (26) and (31) and work is in progress.

Finally, we should comment the influence of the initial approximations made to obtain
the analytical result (31). First of all we considered in (18) only oneRLA F = 1
case. The assumption is valid if the coupling between theentities is very weak. If the
concentration of theobjectsin the environmentis very low the condition is fulfilled. Our
numerical simulation, with concentrations of up to 10% (see figure 2), indicates a good
agreement with theoretical established Monte Carlo timesteps. Therefore, we may conclude
that nonlinear coupling of theentities’ local dynamics does not play a significant role in
the low-concentration limit and our results are valid. We also considered here a near-
equilibrium particular configuration (see figure 3) to demonstrate the sufficient convergence
condition. This particular choice is based on a numerical observed oscillatory phenomenon
which manifests itself near the final aggregation stage. We demonstrate that the probability
of growing a cluster with one unit is proportional to its dimension and, therefore, the
oscillations are only transient phenomena.

4.1. Numerical simulations

Let us briefly discuss the numerical simulations results that support our conclusion.
One set of simulations was done withp+ = p− = 0.5 andx0 = 1. We let RLA to

walk through the lattice (τ = 106 steps). Every time whenfa > fb and theRLA is in the
first a-type cluster the variableN1 increases by one unit. Otherwise whenfa > fb and the
RLA is in the seconda-type clusterN2 increases by one unit. It is assumed that the ratio
R (see (31)) can be estimated by the ratioN1

N2
. The numerical simulations were performed

for constant dimension of the firsta-type cluster (n1 = 10) and increasing the dimension
of the second one (n2 = 20, 40, 60, 80, 100, 120, 140, 160, 180, 200). Figure 4 shows
the dependence of the probability ratioN1

N2
on the two-cluster dimension ration1

n2
. As we

theoretically predicted, this number must decrease whenn1
n2

decreases. In figure 4 there

are three different plots of theN1
N2

dependence onn1
n2

for different dimensions of theb-type
clusters (m1 = m2 = 50, 100, 500). It can be seen that the influence of the of theb-type
clusters on the aggregation of thea-type clusters is not significant.

Our sufficient convergence demonstration is based on the evaluation of the ratioR

(see (31)) which (according to figure 4) confirms the theoretical predicted dependence.
But, our previous results were done in a particular case, namely, only oneRLA in
the lattice (F = 1). We performed numerical simulations withF = 30 RLA in a
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Figure 4. The probability ratioN1
N2

dependence on the ration1
n2

of the two a-type cluster for
different b-type clusters dimensions (m1 = m2 = m). ‘∗’ corresponds tom = 50, ‘+’ to
m = 100 and ‘o’ tom = 500. In all these simulationsr = 1.5 andx0 = 1.

periodic one-dimensional latticeenvironment(see figure 5). Differenta-type cluster
dimensions were usedn1 = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 and, respectively,n2 =
20, 40, 60, 80, 100, 120, 140, 160, 180, 200, with a constant ratio of the twoa-type clusters
( n1
n2
= 1

2). Here, as we pointed out in the previous case, three different plots of the
N1
N2

dependence onn1
n2

were considered. Comparing theN1
N2

values from figures 4 and 5
we find that an increase of the number ofentitiesdoes not change the established sufficient
convergence condition.

Finally, we performed numerical simulations starting from different initial positions. It
can be seen from figure 6 that the mean value of the ratioN1

N2
, with a constantn1

n2
= 0.5

value, remains in the expected range for every initial positionx0.

5. Conclusions

In this paper we analysed the convergence properties of the FSO algorithm.
We found necessary analytical conditions to starttwo-objectcluster aggregation. We

also found a good agreement between the theoretical and numerical limits of the Monte
Carlo timesteps that ensure the convergence of the algorithm.

We also proved that, near the final aggregation stage, the probability of increasing a
cluster (pile) is proportional to its dimension (the number of includedobjects). Therefore,
we derived a sufficient convergence condition and demonstrate that the algorithm cannot be
trapped in an oscillatory regime.

We considered a particular, monotonically decreasing,weight function. To include some



8462 S A Oprişan

Figure 5. The ratio N1
N2

dependence on theb-type cluster dimension for the fixedn1
n2
= 0.5

value of the twoa-type clusters. ‘∗’ corresponds tom1 = m2 = 50, ‘+’ to m1 = m2 = 100
and ‘o’ tom1 = m2 = 500. In all these simulationsr = 1.5 andx0 = 1.

Figure 6. The ratio N1
N2

dependence on the starting positionx0 in the lattice for the fixed values
n1
n2
= 0.5 andm1 = m2 = 100.

experimental facts related to the self-organized response of the immune system to tumour
attack we considered a different-monotonically increasing—weight function. The work is
in progress and some preliminary results were published (see [11]).
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[10] Oprişan S A 1998 The theory of stochastic functional self-organizationEur. J. Phys.in press
[11] Oprişan S A, Tarus B and Frangopol P T 1998 The mesoscopic approach to chemical mechanism of tumor

growth (II) Rom. J. Phys.43 595–601
[12] Perdang J M and Lejeune A 1993 (ed)Cellular Automata(Singapore: World Scientific)
[13] Unsal C 1993 Self-organisation in large population of mobile robotsMS ThesisVirginia Polytechnic Institute

and SU
[14] Wolfram S 1985Phys. Rev. Lett.55 449


